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Parametric (Anti-) Self-Dual Variables and a
Related Parametric Yang± Mills-Like Action in
Four-Dimensional Gravity

Ya-Bo Wu1
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Internal and external parametric dual transformations as well as (anti-) self-dual
variables in four-dimensional gravity are presented in a unified way via a
parameter. The double complex (anti-) self-dual variables including the double
complex Ashtekar variables are studied by using the double complex function
method. Concretely, a parametric Yang±Mills-like action is proposed and the
analytic continuation from a double action to the Euclidean action is discussed.
Some results of previous gravitational theories are extended to a parametric form.

1. INTRODUCTION AND PRELIMINARIES

The Ashtekar variables (Ashtekar, 1986) have been considered as funda-

mental variables in the description of classical and quantum gravity (Jacobson

and Smolin, 1987) since these (anti-) self-dual variables lead to a much simpler

Hamiltonian constraint than the Arnowitt±Deser±Misner (ADM) formulation
(Arnowitt et al., 1962). Moreover, the Ashtekar formulation has provided us

with a new way to study gravity from a nonperturbat ive point of view. In

spite of the success of the formulation, there are still several problems that

the Ashtekar program has to face. The most important one is the issue of

the reality conditions. As is well known, the reality conditions must be
imposed on the complex (or elliptic complex) Ashtekar variables in order to

recover the usual real formulation of general relativity for space-times with

Lorentzian signature. Thus, some effort (Barbero, 1994, 1995) has been made

to overcome the drawback of introducing complex variables. On the other

hand, a number of authors (e.g., Barbero, 1994, 1995; Soo, 1995) have
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discussed those (anti-) self-dual variables corresponding to the Euclidean

signature of the metric, which must be real in previous theories. But, in fact,

they may be complex (i.e., hyperbolic complex) variables, as we shall see
below. Thus the question arises whether there is a unified method to deal

simultaneously with real and complex (anti-) self-dual variables for

Lorentzian and Euclidean signatures in four-dimensional gravity. We will

answer this question affirmatively by using a parameter which is used to

control the space-time signature. Moreover, we can treat, in a unified way,

ordinary complex and hyperbolic complex (anti-) self-dual variables by means
of the double complex function method (DCFM). In fact, as discussed else-

where (Zhong, 1985; Hucks, 1993; Wu, 1994), DCFM and the hyperbolic

complex structure have been applied to many fields in physics. Hence it

should be possible to apply DCFM to complex (anti-) self-dual gravitational

theory (SDGT). In this paper we will show that real, ordinary complex and

hyperbolic complex (anti-) self-dual variables in four-dimensional gravity
can be expressed in a unified way via a parameter, and DCFM not only can

treat the complex Ashtekar variables, which may provide us with a way to

study simultaneously Lorentzian and Euclidean gravity from a nonperturba-

tive point of view, but also give some new results, and extend some given

results (Soo, 1995) into a parametric form.
In order to stress the role of the parameter b to be introduced and to

apply DCFM to complex SDGT, here we introduce a parametric real 4-

manifold M ( b ) 5 (ME , M (J )) instead of the usual real 4-manifold. For any

point p P M ( b ) there is an internal space which contains a real internal

Euclidean space for the real 4-manifold ME and a double complexified internal

space, i.e., an internal Minkowskian space and an internal Euclidean space
for the double real 4-manifold M (J ).

We begin with a brief introduction of DCFM. Let J denote the double

imaginary unit, i.e., J 5 i (i 2 5 2 1) or J 5 e ( e 2 5 1 1, e Þ 1). Z (J ) 5
a (J ) 1 b (J ) is called a double complex number, where a (J ) and b (J ) are

double real numbers. Sometimes Z (J ) may be directly written as Z (J ) 5
(ZC , ZH), where ZC 5 Z (J 5 i), ZH 5 (J 5 e ), which are called ordinary
complex and hyperbolic complex numbers, respectively. On the other hand,

we know that in the connection dynamics of gravity of four dimensions, the

connection one-form can be decomposed into self-dual and anti-self-dual

parts. The (anti-) self-dual part of the connection plays a key role in the

Ashtekar formulation. Moreover, the connection one-form can be self-dual

or anti-self-dual with respect to only its internal indices. But the decomposition
into self-dual parts of the curvature two-form G can be dualized with respect

to internal and external indices. Generally speaking, if a two-form carries a

pair of antisymmetric internal indices AB, with each index taking values from

0 to 3, it is possible to consider the internal and external duality transforma-
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tions G * and * G. As has been pointed out (Soo, 1995), the squares of

the internal and external dual operators acting on G are plus or minus the

identities, i.e.,

G * * 5 * * G 5 6 G (1)

where plus and minus signs respectively correspond to the Euclidean and

the Lorentzian signature, h E 5 diag( 1 1, 1 1, 1 1, 1 1) and h L 5 diag( 2 1,

1 1, 1 1, 1 1). It follows that the eigenvalues of the internal and external

dual operators with Lorentzian signature are 6 i, and the eigenvalues with
Euclidean signature are 6 1 and 6 e . From this we can easily find that for

the description of Euclidean gravity we can not only use real (anti-) self-

dual variables which are familiar to us, but also use hyperbolic complex

(anti-) self-dual variables.

2. INTERNAL AND EXTERNAL PARAMETRIC DUAL
TRANSFORMATIONS AND (ANTI-) SELF-DUAL
OPERATORS

According to the above discussion, we introduce a parameter b to denote

the different eigenvalues of the dual operator. Of course, here b can only

take as values the real unit 1 and the double imaginary unit J. This means
the dual transformation corresponding to its different eigenvalues b is para-

metric, i.e., * 5 * ( b ). Hence, the definition of the internal and external

parametric dual transformations can be respectively given as follows:

G * AB m n ( b ) : 5 1±2 e KL
AB ( b )GKL m n ( b ) (2)

* GAB m n ( b ) : 5 1±2 e ( b ) e l s
m n ( b )GAB l s ( b ) (3)

When taking b 5 1, the star * is the usual dual transformation for the
Euclidean signature, which here denote by * E. But if b 5 J, the star * is

doubled, i.e., * 5 * (J ) 5 ( * C , * H), which respectively correspond to the

Lorentzian and the Euclidean signature. The explicit forms are

G * AB m n (J ) : 5 1±2 e KL
AB (J )GKL m n (J ) (4)

* GAB m n (J ) : 5 1±2 e (J ) e l s
m n (J )GAB l s (J ) (5)

The internal indices of e KL
AB(J ) and the external indices of e l s

m n (J ) are

raised by h AB(J ) 5 ( h AB(C ), h AB(H )) 5 ( h E , h L) and g m n (J ), and e (J ) is the

determinant of the vierbein, e A(J ) 5 e A
m (J )dx m . If GAB m n ( b ) satisfies

G * ( b ) 5 6 b G ( b ) and * G ( b ) 5 6 b G ( b ) (6)
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then G ( b ) is called the internal and external parametric self-dual or anti-

self-dual, respectively. Notice that when b 5 1, G satisfying G * 5 6 G
( * G 5 6 G) is a real internal (external) self-dual or anti-self-dual variable
for the Euclidean signature, and if b 5 J, G(J ) satisfying G * (J ) 5 6 JG(J )

[ * G (J ) 5 6 JG(J )] is called a double complex internal (external) self-dual

or anti-self-dual variable, e.g., G (J 5 i) 5 GC is called an ordinary complex

one corresponding to Lorentzian signature, and G (J 5 c) 5 GH is here called

a hyperbolic complex one corresponding to Euclidean signature.

According to Chee (1996), a parametric two-form G ( b ) can be decom-
posed into four parts:

G ( b ) 5 +G +( b ) 1 2 G +( b ) 1 +G 2 ( b ) 1 2 G 2 ( b ) (7)

where +G +( b ) [ 2 G 2 ( b )] is self-dual (anti-self-dual) with respect to both

internal and external indices, and +G 2 ( b ) [ 2 G +( b )] external self-dual (anti-
self-dual) and internal anti-self-dual (self-dual). The parametric internal and

external self-dual operators 1 (anti-self-dual operators 2 ) are defined to be

G 6 ( b ) : 5 1±2 (G * ( b ) 6 b G ( b )) (8)

6 G ( b ) : 5 1±2 ( * G ( b ) 6 b G ( b )) (9)

It follows that G 6 ( b 5 1) 5 G 6
E is a real self-dual (or anti-self-

dual) variable for the Euclidean signature, and G 6 ( b 5 i) 5 G 6
C

and G 6 ( b 5 e ) 5 G 6
H are ordinary and hyperbolic complex self-dual (or

anti-self-dual) variables for the Lorentzian and the Euclidean signature,

respectively. In addition, each of the four parts in expression (7) can be

expressed by G ( b ). For example,

2 G 2 ( b ) 5 1±2 ( * G 2 ( b ) 2 b G 2 ( b ))

5 1±4( * G * ( b ) 1 b 2G ( b ) 2 b G ( b ) 2 b G * ( b )) (10)

It can be verified that the definitions given above are true for arbitrary

an n-form of a parametric internal space at a point on a 2n-dimensional
real manifold.

3. THE RELATED PARAMETRIC YANG± MILLS-LIKE ACTION

It is a matter of convention to use either self-dual or anti-self-dual
variables. So we choose to use anti-self-dual variables for all our discussions

and adopt the convention that upper case Latin indices denoting internal

indices run from 0 to 3, while lower case indices run from 1 to 3.

Let G AB( b ) 5 2 G BA( b ) be a parametric connection one-form, and
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G 2
AB( b ) 5 1±2 ( G * AB( b ) 2 b G AB( b )). It can be verified that the curvature two-

form of G 2
AB( b ),

F 2
AB( b ) 5 d G 2

AB( b ) 1 G 2
AD( b ) ` G 2 D

B ( b ) (11)

satisfies

F 2
AB( b ) 5 1±2 (F * AB( b ) 2 b FAB( b )) (12)

where

FAB( b ) 5 d G AB( b ) 1 G AD( b ) ` G D
B ( b ) (13)

In addition, here we introduce a parametric two-form S AB( b ) 5
eA( b ) ` eB( b ). For it, internal and external dual transformations are the

same, i.e.,

S * AB( b ) 5 * S AB( b ) (14)

Now we construct the proposed parametric Yang±Mills-like action as

follows:

S ( b ) 5 S (e ( b ), G 2 ( b ))

5 b 2 # M( b ) F b
g

2 F 2
AB( b ) 1 b 2 g

16 p G
S 2

AB( b ) G
` * F b

g
2 F 2 AB( b ) 1 b 2 g

16 p G
S 2 AB( b ) G (15)

where 2 F 2
AB( b ) 5 1±2 ( * F 2

AB( b ) 2 b F 2
AB ( b )), g and G are constants here. If

we let

V (e ( b ), G 2 ( b )) 5
b
±g

2 F 2
AB( b ) 1 b 2 g

16 p G
S 2

AB( b ) (16)

we can rewrite equation (15) as

S ( b ) 5 S (e ( b ), G 2 ( b )) 5 b 2 # M ( b )

Tr( V ` * V ) 5 2 b 3 # M( b )

Tr( V ` V )

5 2 b 3 # M ( b ) 5
1

2g 2 [F 2
AB( b ) ` F 2 AB( b ) 2 b 3 * ( b )F 2

AB( b ) ` F 2 AB( b )]

2
1

8 p G
F 2

AB( b ) ` S 2 AB( b ) 1
g 2

(16 p G)2 S 2
AB( b ) ` S 2 AB( b ) 6

(17)
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From equation (17) we can see the following.

1. Since V is anti-self-dual with respect to both internal and external

indices, equation (17) adds a parametric Yang±Mills action # M( b )

Tr(F ( b ) `

* F 2 ( b )), in contrast with the proposed action in the gauge theory of the
de Sitter group (Nieto et al., 1994). Further, we can find that (17) gives

similar results with the internal and external anti-self-dual parts of Tr( * V `
V ) and Tr( V ` V * ) when the torsion vanishes (Chee, 1996).

2. In the two cases of b 5 1 and b 5 i in equation (17) we can

respectively get the positive-semidefinite action SE 5 S ( b 5 1) and the
corresponding Lorentzian action SL 5 S ( b 5 i) given by Soo (1995). But

when taking b 5 e , we find SH 5 S ( b 5 e ) is a new action, which is

SH 5 2 e # MH 5
1

2g 2 [F 2
AB(H ) ` F 2 AB(H ) 2 e * (H )F 2

AB(H ) ` F 2 AB(H )]

2
1

8 p G
F 2

AB(H ) ` S 2 AB(H ) 1
g 2

(16 p G)2 S 2
AB(H ) ` S 2 AB(H ) 6

(18)

Here it is called the hyperbolic Euclidean action. Obviously it differs

from the Euclidean action SE. It should be noted that the third term in (18)

corresponds to the Ashtekar action (Soo, 1995), so we call it the hyperbolic

Ashtekar action. It follows that S (J ) contains a double Ashtekar action, i.e.,

the ordinary and hyperbolic Ashtekar actions. However, whether we can

obtain the equations of motion of the double action as well as put the double
complex SDGT in Hamiltonian form is the subject of forthcoming papers.

4. THE ANALYTIC CONTINUATION FROM THE DOUBLE
ACTION TO THE EUCLIDEAN ACTION

In the following, we shall show that it is possible to continue the double
action S (J ) 5 (Sc , SH) to the Euclidean action SE by a double Wick rotation

(DWR), and the double analytic continuation (DAC) from S (J ) to SE has the

property that exp(J 3 S (J )) 5 exp(SE). Moreover, the self-duality of the fields

G 2 (J ), F 2 (J ), and S 2 (J ) with respect to the double internal * (J ) as well as

the self-duality of 2 F 2 and S 2 (J ) with respect to the double external * (J )

can be preserved in the course of the continuation.
A double Wick rotation DWR which includes both the ordinary and

hyperbolic Wick rotation, i.e., DWR 5 (CWR, HWR) with e0(J ) 5 J 3(eE)0

and ea(J ) 5 (eE)a will result in the metric having Euclidean signature h E 5
diag( 1 1, 1 1, 1 1, 1 1). The corresponding changes induced here are
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J 2 S 2 0a(J ) 5 S 2
0a(J ) j S 2 0a

E 5 ( S 2
E )0a (19)

J 2F 2 0
a(J ) 5 F 2

0a(J ) j F 2 0
aE 5 (F 2

E )0a (20)

J 3 * (J ) j * E (21)

To obtain the continuation explicitly, we note that S 2
bc(J ) 5

2 J 3 e 0a
bc(J ) S 2

0a(J ) and F 2
bc(J ) 5 2 J 3 e 0

bc(J )F 2
0a(J ). Therefore the double

action becomes

S (J ) 5 S (e (J ), G 2
0a(J ))

5 2 J 3 # M (J) 5
8

2g 2 [F 2
0a(J ) ` F 2 0a(J ) 2 J 3 * (J )F 2

0a(J ) ` F 2 0a(J )]

2
1

8 p G
8F 2

0a(J ) ` S 2 0a(J ) 1
g 2

(16 p G)2 S 2
0a(J ) ` S 2 0a(J ) 6

(22)

Thus

2 J 3S (J ) 5 # M (J) 5
8

2g 2 [F 2
0a(J ) ` J 2F 2 0a(J ) 2 J 3 * (J )F 2

0a(J ) ` J 2F 2 0a(J )]

2
1

8 p G
8F0a(J ) ` J 2 S 2 0a(J ) 1

g 2

(16 p G)2 S 0a(J ) ` J 2 S 2 0a(J ) 6
(23)

is continued to

# M(E) 5
8

2g 2 [F 2
0a(E ) ` F 2 0a(E ) 2 * (E )F 2

0a(E ) ` F 2 0a(E )]

2
1

8 p G
8F 2

0a(E ) ` J 2 S 2 0a(E ) 1
g 2

(16 p G)2 S 2
0a(E ) ` J 2 S 2 0a(E ) 6

5 # ME 5
8

2g 2 [(F 2
E )0a ` F 2 0a

E 2 * E(F 2
E )0a ` F 2 0a

E ]

2
1

8 p G
8(F 2

E )0a ` S 2 0a
E 1

g 2

(16 p G)2 ( S 2
E )0a ` S 2 0a

E 6
5 # ME 5

1

2g 2 [(F 2
E )AB ` F 2 AB

E 2 * E(F 2
E )AB ` E 2 AB

E ]

2
1

8 p G
(F 2

E )AB ` S 2 AB
E 1

g 2

(16 p G)2 ( S 2
E )AB ` S 2 Ab

E 6
5 SE

(24)



2134 Wu

where SE is precisely the Euclidean action. So we indeed have a double

analytic continuation DAC 5 (CAC, HAC) from exp(J 3 S (J )) to exp(SE). The

above discussion about the DAC can be diagrammed as follows:

(25)

From (25) we easily see that the continuation from Lorentzian to Euclid-

ean signature (Soo, 1995) is just the CAC by CWR in (25). Obviously, it is

only half of our results.

REFERENCES

Arnowitt, R., Deser, S., and Misner, C. W. (1962). The Dynamics of General Relativity in

Gravitation, An Introduction to Current Research , L. Witten, ed., Wiley, New York.

Ashtekar, A. (1986). Physical Review Letters, 57, 2244.

Barbero, G. (1994). Physical Review D, 49, 6935.

Barbero, G. (1995). Physical Review D, 51 5498.

Chee, Guoying. (1996). Physical Review D, 54, 6552.

Hucks, J. (1993). Journal of Mathematical Physics, 34, 5986.

Jacobson, T., and Smolin, L. (1987). Physics Letters B, 196, 39.

Nieto, J. A., Obregon, O., and Socorro, J. (1994). Physical Review D, 50 R3583.

Soo, Chopin. (1995). Physical Review D, 52, 3484.

Wu, Ya Bo (1994). International Journal of Theoretical Physics, 33, 2415.

Zhong, Z. Z. (1985). Journal of Mathematical Physics, 26, 2589.


